NATURAL GAS PROCESSING, SWEETENING & SULPHUR RECOVERY

TRAINIT ACADEMY

PCE176
Process and
Chemical
Engineering

COURSE TITLE

NATURAL GAS PROCESSING, SWEETENING & SULPHUR RECOVERY

COURSE DATE/VENUE

09 – 13 March 2020 London, UK

COURSE REFERENCE

PCE176

COURSE DURATION

05 Days

DISCIPLINE

Process and Chemical Engineering

COURSE INTRODUCTION

The Gas and Liquid Contracts that exist (or are being negotiated) will determine the objectives of the processes that you will have to incorporate into any new facility and how you have to operate any existing facility. There exists a variety of processes that will condition your Natural Gas and Hydrocarbon Liquids to satisfy the Contract requirements. The objective of this course is to make you aware of the options available to you so that you can evaluate all the processes that will satisfy your objective to determine which particular process is the best from a capitol cost and operating cost perspective.

ACADEMY

COURSE OBJECTIVE

Upon completion of this course, you will gain knowledge of the processes available to process your Natural Gas and Hydrocarbon Liquid Products

COURSE AUDIENCE

This course is designed for project managers, plant managers, plant supervisors, technical staff, and contractor personnel involved in project planning, process selection and operation of Natural Gas Production. The greatest benefit arises from considering all the processes that will accomplish your process requirements to determine which one is the best for your particular application from a capital cost and operating cost perspective. You will also be able to see which processes are available to you to de-bottleneck or modify existing processes. The practical techniques and examples provide useful insights that are valuable at any stage of project execution and operation.

ACADEMY

COURSE CONTENT

Gas & Liquid Process Selection
Contract Terms

Basic Consideration

Gas Contracts

- Quantity
- □ Quality
- Heating Value
- o Sulphur Content
- o Maximum Temperature
- o Water Content (H₂O Dewpoint)
- o Hydrocarbon Dewpoint (HCDP)
- o Other $(N_2, He, Ar, CO_2, Hg, O_2)$

Liquid Contracts

- Commercial Ethane
- Commercial Propane
- ☐ Commercial Butane
- ☐ Butane-Propane Mixes (LPG)
- □ Propane HD-5
- □ Natural Gasoline

O۱	verall Production System
Sc	olution Gas
As	sociated Gas
N	on-Associated Gas
Ga	as Processing Module
Ga	as Conditioning Module
	H ₂ O Removal (Dehydration)
	H ₂ S & CO ₂ Removal (Gas Sweetening)
	Nitrogen Removal
	Mercury Removal
	Oxygen Removal
NC	GL Extraction Modu <mark>le</mark>
	Products
	Absorption (<mark>Lean Oi</mark> l)
	Adsorption (HRU)
	Condensation
0	Mechanical Refrigeration
0	Mixed Refrigerants
0	Turbo Expander
0	Twister
0	JT Refrigeration
•	Stabilization Module
•	Product Treating Module
Cr	naracterization of Natural Gas & it's Products
Ph	ysical Properties of Pure Components
lde	eal Gas Laws
	Boyle's Law

	Charles' Law			
	Avogadro's Principle			
	Dalton's Law			
	Combined Ideal Gas Law			
Physi	ical Properties of Mixtures			
Equa	Equations of State			
	Van der Waals			
	Redlich-Kwong (RK)			
	Soave Redlich-Kwong (SRK)			
	Peng Robinson (PR)			
	Benedict-Webb-Rubin-Starling (BWRS)			
Therr	nodynamic Prop <mark>ert</mark> ies			
	Entropy			
	Enthalpy			
	ACADEMY			
Equil	ibrium Rat <mark>io (K Value)</mark>			
Sepa	ration			
Types	s of Separators			
	Horizontal			
	Vertical			
	Spherical			
	Centrifugal			
	Cyclone			
0	Reverse Flow			
0	Axial Flow			
0	Recycling			
	Filter			
	Liquid Coalescer			
Wate	r Vapour Removal (H₂O Dewpoint Control)			

Wate	ter Content	
	HC Liquids	
	Natural Gas	
	Effect of H ₂ S & CO ₂	
Hydr	drate Formation Temperature	
	Effect of Propane	
	Effect of H ₂ S & CO ₂	
CaCl	Cl ₂ Dehydrators	
MeO	OH Injection	
EG Ir	Injection	
IFPE	EX-1	
TEG	G Dehydration	
Solid	id Desiccant Deh <mark>ydra</mark> tion	
HCD	DP Control	
	A	CADEMY
Adso	sorption (HRU's)	
	2 TOC	
	2 TCC	
	3 TOC	
	3 TCC	
	3 TOC w/TGC	
	3 TCC w/TGC	
	Purge Cycle	
JT R	Refrigeration	
	LTX	
	LTS	
Mech	chanical Refrigeration	
	Variations	

Twister				
Refrigeration Compressors				
	Compression Cycle			
	Single Stage			
	Single Stage w/Economizer			
	Two Stage			
	Types			
	Drivers			
Gas S	Sweetening			
Termi	nology			
Safety	y Precautions			
Types	of Contaminants			
Proce	ss Selection			
Chem	ical Reaction Processes			
	Amines			
0	Chemistry			
0	Typical PFD			
0	General Considerations			
0	Amines Used (MEA, DEA, DGA, MDEA, TEA, DIPA, Formulated Solvents)			
0	Control Variable			
	Caustic Wash			
0	Chemistry			
NGL E	Extraction			
Low T	emperature Mechanical Refrigeration			
JT Re	frigeration			
Refrig	erated JT Expansion			
Adsorption (Lean Oil)				
Turbo	Expander			
	Typical PFD			

	Solid CO ₂ Formation
	Solid Desiccant Dehydrator
	Inlet Compression
	Gas/Gas Exchangers
	Expander
	Re-Compressor
	De-Methanizer
Gas to	Liquids
Sulphi	ur Recovery
Claus	Plan
Modifi	ed Claus Plants
	Typical PFD – 3 Stage
	Process Consid <mark>e</mark> rations
	Mechanical Considerations
	Instrumentation
	ACADEMY
Tail G	as Clean- <mark>up</mark>
	Incineration
	Super Claus 99
	Super Claus 99.5
	SCOT
Liquid	Redox
COUR	SE CERTIFICATE
	IT ACADEMY will award an internationally recognized certificate(s) for each
delega	te on completion of training.

COURSE FEES

\$6,150 per Delegate. This rate includes participant's manual, Hand-Outs, buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

COURSE METHODOLOGY

The training course will be highly participatory and the course leader will present, guide and facilitate learning, using a range of methods including formal presentation, discussions, sector-specific case studies and exercises. Above all, the course leader will make extensive use of real-life case examples in which he has been personally involved. You will also be encouraged to raise your own questions and to share in the development of the right answers using your own analysis and experiences. Tests of multiple-choice type will be made available on daily basis to examine the effectiveness of delivering the course.

- 30% Lectures
- 30% Workshops and work presentation
- 20% Case studies & Practical Exercises
- 10% Role Play
- 10% Videos, Software or Simulators (as applicable) & General Discussions